Summation (Dansk)

Nedenstående formler involverer endelige summer; for uendelige summeringer eller endelige summeringer af udtryk, der involverer trigonometriske funktioner eller andre transcendentale funktioner, se listen over matematiske serier.

Generelle identiteterRediger

∑ n = st C ⋅ f (n) = C ⋅ ∑ n = stf (n) {\ displaystyle \ sum _ {n = s} ^ {t} C \ cdot f (n) = C \ cdot \ sum _ {n = s} ^ {t} f (n) \ quad} (fordelingsevne) st n = stf (n) ± st n = stg (n) = ∑ n = st (f (n) ± g (n)) {\ displaystyle \ sum _ {n = s} ^ {t} f (n) \ pm \ sum _ {n = s} ^ {t} g (n) = \ sum _ {n = s} ^ {t} \ left (f (n) \ pm g (n) \ right) \ quad} (kommutativitet og associativitet) ∑ n = stf (n) = ∑ n = s + pt + pf (n – p) {\ displaystyle \ sum _ {n = s} ^ {t} f (n) = \ sum _ {n = s + p} ^ {t + p} f (np) \ quad} (indeksskift) ∑ n ∈ B f (n) = ∑ m ∈ A f (σ (m)), {\ displaystyle \ sum _ {n \ i B} f (n) = \ sum _ {m \ i A} f (\ sigma (m)), \ quad} for en sammenhæng σ fra et endeligt sæt A til et sæt B (indeks lave om); dette generaliserer den foregående formel. ∑ n = stf (n) = ∑ n = sjf (n) + ∑ n = j + 1 tf (n) {\ displaystyle \ sum _ {n = s} ^ {t} f (n) = \ sum _ { n = s} ^ {j} f (n) + \ sum _ {n = j + 1} ^ {t} f (n) \ quad} (opdeling af en sum ved hjælp af associativitet) ∑ n = abf (n) = ∑ n = 0 bf (n) – ∑ n = 0 a – 1 f (n) {\ displaystyle \ sum _ {n = a} ^ {b} f (n) = \ sum _ {n = 0} ^ { b} f (n) – \ sum _ {n = 0} ^ {a-1} f (n) \ quad} (en variant af den foregående formel) ∑ n = stf (n) = ∑ n = 0 t – sf (t – n) {\ displaystyle \ sum _ {n = s} ^ {t} f (n) = \ sum _ {n = 0} ^ {ts} f (tn) \ quad} (summen fra første sigt op til det sidste er lig med summen fra den sidste ned til den første) ∑ n = 0 tf (n) = ∑ n = 0 tf (t – n) {\ displaystyle \ sum _ {n = 0} ^ {t} f (n) = \ sum _ {n = 0} ^ {t} f (tn) \ quad} (et bestemt tilfælde med formlen ovenfor) ∑ i = k 0 k 1 ∑ j = l 0 l 1 ai, j = ∑ j = l 0 l 1 ∑ i = k 0 k 1 ai, j {\ displaystyle \ sum _ {i = k_ {0}} ^ {k_ {1}} \ sum _ {j = l_ { 0}} ^ {l_ {1}} a_ {i, j} = \ sum _ {j = l_ {0}} ^ {l_ {1}} \ sum _ {i = k_ {0}} ^ {k_ { 1}} a_ {i, j} \ quad} (kommutativitet og associativitet, igen) ∑ k ≤ j ≤ i ≤ nai, j = ∑ i = kn ∑ j = kiai, j = ∑ j = kn ∑ i = jnai, j = ∑ j = 0 n – k ∑ i = kn – jai + j, i {\ displaystyle \ sum _ {k \ leq j \ leq i \ leq n} a_ {i, j} = \ sum _ {i = k} ^ {n} \ sum _ {j = k} ^ {i} a_ {i, j} = \ sum _ {j = k} ^ {n} \ sum _ {i = j} ^ {n} a_ {i, j} = \ sum _ {j = 0} ^ {nk} \ sum _ {i = k} ^ {nj} a_ {i + j, i} \ quad} (en anden anvendelse af kommutativitet og associativitet) ∑ n = 2 s 2 t + 1 f (n) = ∑ n = stf (2 n) + ∑ n = stf (2 n + 1) { \ displaystyle \ sum _ {n = 2s} ^ {2t + 1} f (n) = \ sum _ {n = s} ^ {t} f (2n) + \ sum _ {n = s} ^ {t} f (2n + 1) \ quad} (opdeling af en sum i dens ulige og lige dele, for lige indekser) ∑ n = 2 s + 1 2 tf (n) = ∑ n = s + 1 tf (2 n) + ∑ n = s + 1 tf (2 n – 1) {\ displaystyle \ sum _ {n = 2s + 1} ^ {2t} f (n) = \ sum _ {n = s + 1} ^ {t} f ( 2n) + \ sum _ {n = s + 1} ^ {t} f (2n-1) \ quad} (opdeling af en sum i dens ulige og lige dele for ulige indekser) (∑ i = 0 nai) (∑ j = 0 nbj) = ∑ i = 0 n ∑ j = 0 naibj {\ displaystyle \ left (\ sum _ {i = 0} ^ {n} a_ {i} \ right) \ left (\ sum _ {j = 0} ^ {n} b_ {j} \ right) = \ sum _ {i = 0} ^ {n} \ sum _ {j = 0} ^ {n} a_ {i} b_ {j} \ quad} ( distribuere utivity) ∑ i = sm ∑ j = tnaicj = (∑ i = smai) (∑ j = tncj) {\ displaystyle \ sum _ {i = s} ^ {m} \ sum _ {j = t} ^ {n} {a_ {i}} {c_ {j}} = \ left (\ sum _ {i = s} ^ {m} a_ {i} \ right) \ left (\ sum _ {j = t} ^ {n} c_ {j} \ højre) \ quad} (fordelingsgrad tillader faktorisering) ∑ n = st log b ⁡ f (n) = log b ⁡ ∏ n = stf (n) {\ displaystyle \ sum _ {n = s} ^ { t} \ log _ {b} f (n) = \ log _ {b} \ prod _ {n = s} ^ {t} f (n) \ quad} (et produkts logaritme er summen af logaritmerne af faktorerne) C ∑ n = stf (n) = ∏ n = st C f (n) {\ displaystyle C ^ {\ sum \ limits _ {n = s} ^ {t} f (n)} = \ prod _ {n = s} ^ {t} C ^ {f (n)} \ quad} (eksponentiel for et beløb er produktet af eksponentielt for summanderne)

Beføjelser og logaritme for aritmetiske progressioner Rediger

∑ i = 1 nc = nc {\ displaystyle \ sum _ {i = 1} ^ {n} c = nc \ quad} for hver c, der ikke afhænger af i ∑ i = 0 ni = ∑ i = 1 ni = n (n + 1) 2 {\ displaystyle \ sum _ {i = 0} ^ {n} i = \ sum _ {i = 1} ^ {n} i = {\ frac {n (n + 1)} {2 }} \ qquad} (Summen af den enkleste aritmetiske progression, der består af n fi første naturlige tal.): 52 ∑ i = 1 n (2 i – 1) = n 2 {\ displaystyle \ sum _ {i = 1} ^ {n} (2i-1) = n ^ {2} \ qquad} (Summen af de første ulige naturlige tal) ∑ i = 0 n 2 i = n (n + 1) {\ displaystyle \ sum _ {i = 0} ^ {n} 2i = n (n + 1) \ qquad} (Sum af første lige naturlige tal) ∑ i = 1 n log ⁡ i = log ⁡ n! {\ displaystyle \ sum _ {i = 1} ^ {n} \ log i = \ log n! \ qquad} (En sum af logaritmer er produktets logaritme) ∑ i = 0 ni 2 = ∑ i = 1 ni 2 = n (n + 1) (2 n + 1) 6 = n 3 3 + n 2 2 + n 6 {\ displaystyle \ sum _ {i = 0} ^ {n} i ^ {2} = \ sum _ {i = 1} ^ {n} i ^ {2} = {\ frac {n (n + 1) (2n + 1)} {6}} = {\ frac {n ^ {3}} {3}} + {\ frac {n ^ {2}} {2}} + {\ frac {n} {6}} \ qquad} (Summen af de første firkanter, se firkantet pyramidetal.): 52 ∑ i = 0 ni 3 = (∑ i = 0 ni) 2 = (n (n + 1) 2) 2 = n 4 4 + n 3 2 + n 2 4 {\ displaystyle \ sum _ {i = 0} ^ {n} i ^ {3} = \ left (\ sum _ {i = 0} ^ {n} i \ right) ^ {2} = \ left ({\ frac {n (n + 1)} {2}} \ højre) ^ {2} = {\ frac {n ^ {4}} {4}} + {\ frac {n ^ {3}} {2}} + {\ frac {n ^ {2 }} {4}} \ qquad} (Nicomachus sætning): 52

Mere generelt har man Faulhabers formel

∑ k = 1 nkp = np + 1 p + 1 + 1 2 np + ∑ k = 2 p (pk) B kp – k + 1 np – k + 1, {\ displaystyle \ sum _ {k = 1} ^ {n} k ^ {p} = {\ frac {n ^ {p + 1}} {p + 1}} + {\ frac {1} {2}} n ^ {p} + \ sum _ {k = 2} ^ {p} {\ binom {p} {k}} {\ frac {B_ {k}} {p-k + 1}} \, n ^ {p-k + 1},}

hvor B k {\ displaystyle B_ {k}} betegner et Bernoulli-tal, og (pk ) {\ displaystyle {\ binom {p} {k}}} er en binomial koefficient.

Summationsindeks i eksponenterEdit

I de følgende summeringer antages a at være forskellig fra 1.

∑ i = 0 n – 1 ai = 1 – en 1 – en {\ displaystyle \ sum _ {i = 0} ^ {n-1} a ^ {i} = {\ frac {1- a ^ {n}} {1-a}}} (sum af en geometrisk progression) ∑ i = 0 n – 1 1 2 i = 2 – 1 2 n – 1 {\ displayst yle \ sum _ {i = 0} ^ {n-1} {\ frac {1} {2 ^ {i}}} = 2 – {\ frac {1} {2 ^ {n-1}}}} ( specielt tilfælde for a = 1/2) ∑ i = 0 n – 1 iai = a – nan + (n – 1) an + 1 (1 – a) 2 {\ displaystyle \ sum _ {i = 0} ^ {n -1} ia ^ {i} = {\ frac {a-na ^ {n} + (n-1) a ^ {n + 1}} {(1-a) ^ {2}}}} (en gang afledningen med hensyn til a af den geometriske progression) ∑ i = 0 n – 1 (b + id) ai = b ∑ i = 0 n – 1 ai + d ∑ i = 0 n – 1 iai = b (1 – en 1 – a) + d (a – nan + (n – 1) an + 1 (1 – a) 2) = b (1 – an) – (n – 1) dan 1 – a + da (1 – an – 1) (1 – a) 2 {\ displaystyle {\ begynder {justeret} \ sum _ {i = 0} ^ {n-1} \ venstre (b + id \ højre) a ^ {i} & = b \ sum _ {i = 0} ^ {n-1} a ^ {i} + d \ sum _ {i = 0} ^ {n-1} ia ^ {i} \ \ & = b \ venstre ({\ frac {1-a ^ {n}} {1-a}} \ højre) + d \ venstre ({\ frac {a- na ^ {n} + (n-1) a ^ {n + 1}} {(1-a) ^ {2}}} \ right) \\ & = { \ frac {b (1-a ^ {n}) – (n-1) da ^ {n}} {1-a}} + {\ frac {da (1-a ^ {n-1})} { (1-a) ^ {2}}} \ end {aligned}}} (sum af en aritmetisk – geometrisk sekvens)

Binomiale koefficienter og faktori alsEdit

Hovedartikel: Binomialkoefficient § Summen af binomialkoefficienterne

Der findes meget mange summeringsidentiteter, der involverer binomiale koefficienter (et helt kapitel i Concrete Mathematics er afsat til kun de grundlæggende teknikker) . Nogle af de mest basale er følgende.

Inddragelse af binomialteoremEdit

∑ i = 0 n (ni) an – ibi = (a + b) n, {\ displaystyle \ sum _ {i = 0} ^ {n} {n \ vælg i} a ^ {ni} b ^ {i} = (a + b) ^ {n},} binomial sætning ∑ i = 0 n (ni) = 2 n, {\ displaystyle \ sum _ {i = 0} ^ {n} {n \ vælg i} = 2 ^ {n},} specialtilfældet, hvor a = b = 1 ∑ i = 0 n (ni) pi ( 1 – p) n – i = 1 {\ displaystyle \ sum _ {i = 0} ^ {n} {n \ vælg i} p ^ {i} (1-p) ^ {ni} = 1}, den specielle tilfælde hvor p = a = 1 – b, som for 0 ≤ p ≤ 1, {\ displaystyle 0 \ leq p \ leq 1,} udtrykker summen af binomialfordelingen ∑ i = 0 ni (ni) = n (2 n – 1), {\ displaystyle \ sum _ {i = 0} ^ {n} i {n \ vælg i} = n (2 ^ {n-1}),} værdien ved a = b = 1 af afledt med hensyn til a af binomial sætning ∑ i = 0 n (ni) i + 1 = 2 n + 1 – 1 n + 1, {\ displaystyle \ sum _ {i = 0} ^ {n} {\ frac { n \ vælg i} {i + 1}} = {\ frac {2 ^ {n + 1} -1} {n + 1}},} værdien ved a = b = 1 af antiderivationen i forhold til a af binomial sætning

involverer permutationsnumre Rediger

I de følgende summeringer er n P k {\ displaystyle {} _ {n} P_ {k}} antallet af k-permutationer af n.

∑ i = 0 ni P k (ni) = n P k (2 n – k) {\ displaystyle \ sum _ {i = 0} ^ {n} {} _ {i} P_ {k} {n \ vælg i} = {} _ {n} P_ {k} (2 ^ {nk})} ∑ i = 1 ni + k P k + 1 = ∑ i = 1 n ∏ j = 0 k (i + j) = (n + k + 1) ! (n – 1)! (k + 2) {\ displaystyle \ sum _ {i = 1} ^ {n} {} _ {i + k} P_ {k + 1} = \ sum _ {i = 1} ^ {n} \ prod _ {j = 0} ^ {k} (i + j) = {\ frac {(n + k + 1)!} {(n-1)! (k + 2)}}} ∑ i = 0 ni! ⋅ (n i) = ∑ i = 0 n n P i = ⌊ n! ⋅ e ⌋, n ∈ Z + {\ displaystyle \ sum _ {i = 0} ^ {n} i! \ Cdot {n \ vælg i} = \ sum _ {i = 0} ^ {n} {} _ { n} P_ {i} = \ lfloor n! \ cdot e \ rfloor, \ quad n \ in \ mathbb {Z} ^ {+}}, hvor og ⌊ x ⌋ {\ displaystyle \ lfloor x \ rfloor} angiver gulvet fungere.

AndetRediger

∑ k = 0 m (n + kn) = (n + m + 1 n + 1) {\ displaystyle \ sum _ {k = 0} ^ {m} \ left ({\ begin {array} {c} n + k \\ n \\\ end {array}} \ right) = \ left ({\ begin {array} {c} n + m + 1 \\ n + 1 \\\ end {array}} \ right)} ∑ i = kn (ik) = (n + 1 k + 1) {\ displaystyle \ sum _ {i = k} ^ {n} {i \ vælg k} = {n + 1 \ vælg k + 1}} ∑ i = 0 ni ⋅ i! = (n + 1)! – 1 {\ displaystyle \ sum _ {i = 0} ^ {n} i \ cdot i! = (N + 1)! – 1} ∑ i = 0 n (m + i – 1 i) = (m + nn ) {\ displaystyle \ sum _ {i = 0} ^ {n} {m + i-1 \ vælg i} = {m + n \ vælg n}} ∑ i = 0 n (ni) 2 = (2 nn) {\ displaystyle \ sum _ {i = 0} ^ {n} {n \ vælg i} ^ {2} = {2n \ vælg n}} ∑ i = 0 n 1 i! = ⌊ n! e ⌋ n! {\ displaystyle \ sum _ {i = 0} ^ {n} {\ frac {1} {i!}} = {\ frac {\ lfloor n! \; e \ rfloor} {n!}}}

Harmoniske tal Rediger

∑ i = 1 n 1 i = H n {\ displaystyle \ sum _ {i = 1} ^ {n} {\ frac {1} {i}} = H_ {n}} (dvs. det nte harmoniske tal) ∑ i = 1 n 1 ik = H nk {\ displaystyle \ sum _ {i = 1} ^ {n} {\ frac {1} {i ^ {k}}} = H_ {n} ^ {k}} (det er et generaliseret harmonisk tal)

Skriv et svar

Din e-mailadresse vil ikke blive publiceret. Krævede felter er markeret med *